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ABSTRACT 
 

     This study introduces two innovative floor-connected tuned mass damper inerter 
(TMDI) configurations, achieved through a strategic reconfiguration of damper-inerter 
connections. Utilizing analytical methods and fixed-point theory, closed-form solutions 
for the optimal frequency and damping ratios in single-degree-of-freedom systems are 
derived. A comparative analysis under white noise excitation establishes a performance 
hierarchy: the grounded TMDI outperforms the conventional TMD, which in turn 
surpasses the series floor-connected TMDI (TMDI-II), with the parallel floor-connected 
TMDI (TMDI-I) exhibiting the lowest performance. Parametric studies highlight that the 
placement of the inerter significantly influences vibration mitigation efficiency, with 
grounded configurations demonstrating superior performance compared to their floor-
connected counterparts. The optimality criteria and configuration comparisons derived 
offer critical insights for the design of seismic protection systems, particularly in mass-
sensitive structures. 
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1. INTRODUCTION 
 
     Structural vibration control remains a paramount concern in civil engineering, 
particularly for structures subjected to dynamic loads such as earthquakes excitations. 
Traditional seismic vibration mitigation strategies, including tuned mass dampers 
(TMDs), have been widely adopted but face inherent limitations due to their mass-
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dependent performance and sensitivity to frequency detuning (Lazar et al., 2014; 
Pietrosanti et al., 2017; Smith, 2002). To address these challenges, the tuned mass 
damper inerter (TMDI) system has emerged as a promising advancement, integrating 
the inertial amplification mechanism of the inerter—a two-terminal mechanical device 
generating force proportional to relative acceleration—to achieve superior vibration 
attenuation with reduced mass requirements (Giaralis and Taflanidis, 2018; Khorsand 
and Rofooei, 2024). 
     The TMDI concept builds upon the classical TMD framework while introducing 
critical enhancements. Early studies by Smith (2002) demonstrated the ability of the 
inerter to amplify apparent mass, enabling effective energy dissipation without 
proportional physical mass addition. Subsequent research by Lazar et al. (2014) 
validated this principle through analytical and experimental studies, showing that TMDI 
configurations could suppress vibrations 40–60% more effectively than conventional 
TMDs under harmonic excitations. These findings were further extended by Pietrosanti 
et al. (2020), who developed a generalized two-degree-of-freedom model to optimize 
TMDI performance in multi-degree-of-freedom (MDOF) structures, highlighting 
improved dynamic response control through inertial amplification.  
     Despite these advancements, practical deployment of TMDI systems requires 
addressing several critical challenges: (1) the configuration adaptability to complex 
structural geometries remains underexplored, particularly for irregular high-rise 
buildings where mode shapes and frequency distributions vary significantly across 
heights (Zhang, et al., 2023), (2) the frequency uncertainty—stemming from material 
aging, construction variability, and soil-structure interaction—poses persistent 
challenges to optimal tuning (Ruiz, R. et al., 2018). Additionally, the frequency 
uncertainty of earthquake loads also presents a challenge to the performance of TMDI 
systems (Giaralis and Petrini, 2017). This uncertainty may result in TMDI systems 
failing to achieve the expected vibration control effects in practical applications. 
Therefore, this factor must be fully considered during system design. (3) Multi-objective 
optimization of TMDI parameters (mass ratio, inertance ratio, damping coefficients) 
demands rigorous analytical frameworks to balance conflicting performance criteria 
such as displacement reduction, acceleration mitigation, and economic feasibility 
(Giaralis and Taflanidis, 2018; Li, 2022). 
     Recent studies have explored innovative TMDI configurations to overcome these 
limitations. Giaralis and Taflanidis (2018) proposed a reliability-based design framework 
for MDOF structures, incorporating model uncertainties and using white noise excitation 
to evaluate stochastic responses. Lara-Valencia et al (2020) introduced an exhaustive 
search optimization method, minimizing peak structural displacements and root-mean-
square accelerations through systematic parameter calibration. For nonlinear systems, 
Khorsand and Rofooei (2024) assessed TMDI performance under near-fault and far-
field earthquake records, revealing significant reductions in story drifts and residual 
deformations when combined with auxiliary damping systems. 
     Existing TMDI systems predominantly adopt a "grounded" configuration, where 
one end of the inerter connects to the main structure and the other anchors to the 
ground. This design introduces two critical issues: (1) the complexity of underground 
anchor construction increases maintenance costs by 35% (De Domenico et al., 2018); 
and (2) phase differences between ground motion inputs and structural responses 
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reduce the acceleration differential across the inerter, constraining its virtual mass 
effect (Marian and Giaralis, 2014). To address these challenges, recent studies have 
explored innovative TMDI configurations that deviate from the traditional grounded 
design. For instance, some researchers have proposed floating or semi-active TMDI 
systems that do not require a direct connection to the ground, thereby reducing 
maintenance costs and eliminating the phase difference issue (Ruiz et al., 2018; Sun 
and Tong, 2024). Other studies have focused on optimizing the parameters of the TMDI 
system, such as the mass ratio, inertance ratio, and damping coefficients, to achieve a 
balance between performance and economic feasibility (Petrini et al., 2020).  
     In addition, research into the application of TMDI systems in various engineering 
fields has expanded. For example, in bridge engineering, TMDI systems have been 
investigated for their potential to mitigate vortex-induced vibrations in long-span bridges 
(Dai et al., 2021). Vortex-induced vibrations, caused by wind flowing around bridge 
decks, can lead to significant fatigue damage and reduce the service life of bridge 
components. TMDI systems offer a promising solution for mitigating these vibrations 
and enhancing the structural integrity of long-span bridges. In wind energy, TMDI 
systems have been explored for their ability to enhance the stability of wind turbines 
and improve energy harvesting efficiency (Zhang and Fitzgerald, 2020). By mitigating 
vibrations in wind turbine blades and towers, TMDI systems can contribute to the 
reliable and efficient operation of wind turbines, thereby increasing energy production 
and reducing maintenance costs. 
     Furthermore, advancements in materials science and smart technologies have 
opened up new possibilities for TMDI design. The integration of shape memory alloys, 
magnetorheological elastomers, and other smart materials into TMDI systems has 
enabled the development of adaptive and semi-active control strategies (Sun and Tong, 
2024). In particular, the application of shape memory alloys offers new possibilities for 
the development of adaptive TMDI systems (Song et al., 2006). By utilizing the 
temperature-dependent phase transformation characteristics of shape memory alloys, 
real-time regulation of the dynamic characteristics of TMDI systems can be achieved, 
thereby further enhancing the system's vibration control performance. These smart 
materials offer the unique capability to change their mechanical properties in response 
to external stimuli, such as temperature, electric fields, or magnetic fields. By 
incorporating these materials into TMDI systems, it is possible to create adaptive 
dampers that can adjust their damping characteristics in real-time to match the 
changing dynamic conditions of the host structure (Petrini et al., 2020; Ruiz et al., 2018). 
These strategies offer the potential for improved performance and robustness under 
varying environmental conditions, making TMDI systems even more versatile and 
effective. 
     In conclusion, while the grounded configuration of TMDI systems has been widely 
adopted, it is not without its drawbacks. The increased maintenance costs and phase 
difference issue highlight the need for continued research and development of 
alternative TMDI configurations and optimization strategies. The exploration of new 
TMDI systems, the optimization of system parameters, and the integration of smart 
materials represent promising avenues for advancing the state-of-the-art in TMDI 
technology. 
     This study contributes to the growing body of TMDI research by introducing two 
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novel floor-connected TMDI configurations and conducting comprehensive 
performance evaluations. Unlike conventional grounded TMDI systems, the proposed 
configurations strategically reconfigure damper-inerter connections. The subsequent 
sections are organized as follows: Section 2 develops the analytical model for the main 
structure with proposed TMDI configurations, incorporating parameter variations. 
Section 3 presents frequency domain analysis through displacement transfer functions 
and time domain validation via white noise excitation simulations. The concluding 
section summarizes key findings and proposes recommendations for practical 
implementation of TMDI technology in building structures.   
  
2. Modelling 
 
     2.1 Main Structure 
     The main structure is modeled as a single-degree-of-freedom (SDOF) system 
representing the critical vibration mode to be mitigated by the damper. The governing 
equation of motion is given by:  
 

𝑚𝑚𝑠𝑠𝑢̈𝑢𝑠𝑠(𝑡𝑡) + 𝑐𝑐𝑠𝑠𝑢̇𝑢𝑠𝑠(𝑡𝑡) + 𝑘𝑘𝑠𝑠𝑢𝑢𝑠𝑠(𝑡𝑡) = 𝑓𝑓(𝑡𝑡) (1) 
 

𝑐𝑐𝑠𝑠 = 2𝑚𝑚𝑠𝑠𝜔𝜔𝑠𝑠𝜉𝜉𝑠𝑠 (2) 
 

𝑘𝑘𝑠𝑠 = 𝑚𝑚𝑠𝑠𝜔𝜔𝑠𝑠2 (3) 
 
where 𝑚𝑚𝑠𝑠 is the modal mass; 𝑐𝑐𝑠𝑠 is the viscous damping coefficient, which is given by 
the damping ratio 𝜉𝜉𝑠𝑠; 𝑘𝑘𝑠𝑠 is the stiffness coefficient, which results from the circular 
frequency 𝜔𝜔𝑠𝑠 ; 𝑢̈𝑢𝑠𝑠(𝑡𝑡) , 𝑢̇𝑢𝑠𝑠(𝑡𝑡) , 𝑢𝑢𝑠𝑠(𝑡𝑡)  describe the modal acceleration, velocity and 
displacement, respectively; 𝑓𝑓(𝑡𝑡)  is the external excitation force due to ground 
acceleration. The chosen main structure modal parameters represent typical values of 
a building that may be susceptible to seismic excitation and therefore may require a 
mass damper (Table 1). Notice that the choice of structural modal parameters does not 
influence the outcome of the comparative study under consideration; however, the 
selection of the modal parameters influences the optimum mass damper parameters 
that are given for all considered mass damper topologies. 
 
 

Table 1 Modal parameters of the main structure. 
Modal 
Mass 
𝑚𝑚𝑠𝑠(kg) 

Damping 
Ratio 
𝜉𝜉𝑠𝑠 

Damping Coefficient  
𝑐𝑐𝑠𝑠(𝑘𝑘𝑘𝑘 ⋅ 𝑠𝑠/𝑚𝑚) 

Stiffness 
Coefficient 
𝑘𝑘𝑠𝑠(𝑘𝑘𝑘𝑘/𝑚𝑚) 

Frequency 
(Hz) 

150000 2% 67.53 19000 1.79 
 
 
2.2 Main Structure with a TMD 
     The model of the main structure with a TMD is given by the following two degrees 
of freedom system (Fig. 1): 
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Fig. 1 Analytical model of an SDOF structure with a TMD. 
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where 𝑚𝑚𝑑𝑑  denotes the TMD mass that is determined by the selected mass ratio 𝜇𝜇 as 
follows: 
 

𝑚𝑚𝑑𝑑 = 𝜇𝜇 × 𝑚𝑚𝑠𝑠 (5) 
 
𝑐𝑐𝑑𝑑  and 𝑘𝑘𝑑𝑑  are the damping coefficient and stiffness of the TMD, respectively. The 
parameters of the considered TMD that are numerically optimized for minimum 
structural displacement. The optimization criterion for minimum structural displacement 
was chosen to ensure a fair comparison with the performance of the TMDI, which are 
intended to yield at least a structural displacement response close to its minimum. 
 
2.3 Main Structure with a TMDI with Grounded Inerter 
     The model of the main structure with a TMDI is given by the following two 
degrees of freedom system (Fig. 2): 
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Fig. 2 Analytical model of structure-TMDI system with the inerter connected to the 
ground. 
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where 𝑏𝑏 denotes the “inertance” with unit (kg) that is determined by the selected 
inertance ratio 𝛽𝛽 as follows: 
 

𝑏𝑏 = 𝛽𝛽 × 𝑚𝑚𝑠𝑠 (7) 
 
The inerter force 𝑓𝑓𝑏𝑏 is in proportion to the relative acceleration of the inerter grounds, 
which is here the difference between ground acceleration 𝑢̈𝑢𝑔𝑔 and absolute acceleration 
𝑢̈𝑢𝑑𝑑 + 𝑢̈𝑢𝑔𝑔 of the TMDI mass 𝑚𝑚𝑑𝑑, and is shown in the following equation. To standardize 
the subsequent solution, some notations are introduced, as listed in Table 2. 
 

𝑓𝑓𝑏𝑏 = 𝑏𝑏𝑢̈𝑢𝑑𝑑 (8) 
 
 

Table 2 Notations. 
Notation Definition 

𝜔𝜔𝑠𝑠 = �𝑘𝑘𝑠𝑠/𝑚𝑚𝑠𝑠 Frequency of the main structure 
𝜔𝜔𝑑𝑑 = �𝑘𝑘𝑑𝑑/𝑚𝑚𝑑𝑑 Frequency of the TMDI 
𝜉𝜉𝑠𝑠 = 𝑐𝑐𝑠𝑠/(2𝑚𝑚𝑠𝑠𝜔𝜔𝑠𝑠) Damping ratio of the main structure 
𝜉𝜉𝑑𝑑 = 𝑐𝑐𝑑𝑑/(2𝑚𝑚𝑑𝑑𝜔𝜔𝑑𝑑) Damping ratio of the TMDI 

𝜈𝜈 = 𝜔𝜔𝑑𝑑/𝜔𝜔𝑠𝑠 Frequency ratio of the TMDI to the main structure 
𝜆𝜆 = 𝜔𝜔/𝜔𝜔𝑠𝑠 Frequency ratio of excitation to the main structure 

 
 
     The Fourier transforms of the story displacement can be expressed as follows: 
 

𝑋𝑋(𝜔𝜔) = [−𝜔𝜔2𝑀𝑀 + 𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐾𝐾]−1𝐸𝐸𝐸𝐸(𝜔𝜔) (9) 
 

𝑥𝑥𝑠𝑠(𝜔𝜔) = 𝐷𝐷𝐷𝐷(𝜔𝜔) = [1 0]𝑋𝑋(𝜔𝜔) = 𝐻𝐻𝑠𝑠(𝜔𝜔)𝑓𝑓(𝜔𝜔) (10) 
 

where 
 

𝐻𝐻𝑠𝑠(𝜔𝜔) =
(𝑚𝑚𝑠𝑠𝑏𝑏 + 𝑚𝑚𝑠𝑠𝑚𝑚𝑑𝑑)𝜔𝜔2 − 𝑖𝑖𝑖𝑖(𝑚𝑚𝑠𝑠𝑐𝑐𝑑𝑑 +𝑚𝑚𝑑𝑑𝑐𝑐𝑑𝑑) −𝑚𝑚𝑠𝑠𝑘𝑘𝑑𝑑 −𝑚𝑚𝑑𝑑𝑘𝑘𝑑𝑑

(−𝜔𝜔2𝑚𝑚𝑠𝑠 + 𝑖𝑖𝑖𝑖𝑐𝑐𝑠𝑠 + 𝑖𝑖𝑖𝑖𝑐𝑐𝑑𝑑 + 𝑘𝑘𝑠𝑠 + 𝑘𝑘𝑑𝑑)(−𝜔𝜔2𝑚𝑚𝑑𝑑 − 𝜔𝜔2𝑏𝑏 + 𝑖𝑖𝑖𝑖𝑐𝑐𝑑𝑑 + 𝑘𝑘𝑑𝑑) − (𝑖𝑖𝑖𝑖𝑐𝑐𝑑𝑑 + 𝑘𝑘𝑑𝑑)2 =
∆1
∆2

(11) 

 
    ∆1= (𝑚𝑚𝑠𝑠𝑏𝑏 + 𝑚𝑚𝑠𝑠𝑚𝑚𝑑𝑑)𝜔𝜔2 − 𝑖𝑖𝑖𝑖(𝑚𝑚𝑠𝑠𝑐𝑐𝑑𝑑 + 𝑚𝑚𝑑𝑑𝑐𝑐𝑑𝑑) −𝑚𝑚𝑠𝑠𝑘𝑘𝑑𝑑 −𝑚𝑚𝑑𝑑𝑘𝑘𝑑𝑑 

 
∆2= (𝑚𝑚𝑠𝑠𝑏𝑏 + 𝑚𝑚𝑠𝑠𝑚𝑚𝑑𝑑)𝜔𝜔4−𝑖𝑖𝑖𝑖3(𝑏𝑏𝑐𝑐𝑑𝑑 + 𝑏𝑏𝑐𝑐𝑠𝑠+𝑚𝑚𝑑𝑑𝑐𝑐𝑑𝑑 + 𝑚𝑚𝑑𝑑𝑐𝑐𝑠𝑠 + 𝑚𝑚𝑠𝑠𝑐𝑐𝑑𝑑) −𝜔𝜔2(𝑐𝑐𝑑𝑑𝑐𝑐𝑠𝑠 + 𝑏𝑏𝑘𝑘𝑑𝑑 + 𝑏𝑏𝑘𝑘𝑠𝑠 +

𝑚𝑚𝑑𝑑𝑘𝑘𝑑𝑑 + 𝑚𝑚𝑑𝑑𝑘𝑘𝑠𝑠 + 𝑚𝑚𝑠𝑠𝑘𝑘𝑑𝑑) + 𝑖𝑖𝑖𝑖(𝑐𝑐𝑠𝑠𝑘𝑘𝑑𝑑 + 𝑐𝑐𝑑𝑑𝑘𝑘𝑠𝑠) + 𝑘𝑘𝑑𝑑𝑘𝑘𝑠𝑠    (12) 
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     To simplify the design procedure, it is assumed that the input of the earthquake is 
a white noise with zero-mean, that is, 𝑓𝑓(𝜔𝜔) = 𝑆𝑆0 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. Eq. (10) can thus be written 
as: 
 

𝑥𝑥𝑠𝑠(𝜔𝜔) = 𝐻𝐻𝑠𝑠(𝜔𝜔)𝑆𝑆0 (13) 
 
     Define the performance index 𝐽𝐽 as: 
 

𝐽𝐽 = � ‖𝑥𝑥𝑠𝑠(𝜔𝜔)‖2𝑑𝑑𝑑𝑑 =
+∞

−∞
� ‖𝐻𝐻𝑠𝑠(𝜔𝜔)‖2𝑆𝑆0𝑑𝑑𝑑𝑑
+∞

−∞
(14) 

  
     The performance index 𝐽𝐽 can be expressed in terms of the design parameters as: 
  

𝐽𝐽 = 𝜋𝜋𝑆𝑆0
𝛽𝛽2𝐶𝐶1 + 𝜇𝜇2𝐶𝐶2 + 2𝛽𝛽𝛽𝛽𝐶𝐶3

2𝜇𝜇(𝛽𝛽 + 𝜇𝜇)2𝜈𝜈𝜔𝜔𝑠𝑠3𝜉𝜉𝑑𝑑
(15) 

 
where 
 

𝐶𝐶1 = 1 + 𝜇𝜇(1 + 𝜇𝜇)𝜈𝜈2[−1 + 𝜇𝜇 + 𝜇𝜇(1 + 𝜇𝜇)𝜈𝜈2] 
 

𝐶𝐶2 = 1 + (1 + 𝜇𝜇)4𝜈𝜈4 + (1 + 𝜇𝜇)2𝜈𝜈2[−2 + 𝜇𝜇 + 4(1 + 𝜇𝜇)𝜉𝜉𝑑𝑑2] 
 
                                𝐶𝐶3 = 1 + 𝜇𝜇(1 + 𝜇𝜇)3𝜈𝜈4 + 𝜈𝜈2[−1− 2𝜇𝜇 + 𝜇𝜇3 + 2𝜇𝜇(1 + 𝜇𝜇)2𝜉𝜉𝑑𝑑2]                         
 
     Assuming constant mass and inertance ratios (𝜇𝜇 and 𝛽𝛽), the variance 𝐽𝐽 of Eq. 
(15) is minimized with respect to the TMDI frequency ratio 𝜈𝜈 and damping ratio 𝜉𝜉𝑑𝑑 by 
enforcing the following two conditions 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0,

𝜕𝜕𝜕𝜕
𝜕𝜕𝜉𝜉𝑑𝑑

= 0 (16) 

 
     These conditions yield a system of two equations from which the optimal tuning 
parameters 𝜈𝜈 and 𝜉𝜉𝑑𝑑 of the proposed TMDI configuration are found in terms of 𝜇𝜇 and 
𝛽𝛽 as 
 

𝜐𝜐𝑜𝑜𝑜𝑜𝑜𝑜 =
�(𝛽𝛽 + 𝜇𝜇)[(𝛽𝛽 + 𝜇𝜇)(1− 𝜇𝜇) + 2]

(1 + 𝛽𝛽 + 𝜇𝜇)�2𝜇𝜇(1 + 𝜇𝜇)
(17) 

 
and 

𝜉𝜉𝑑𝑑,𝑜𝑜𝑜𝑜𝑜𝑜 =
(𝛽𝛽 + 𝜇𝜇)�𝛽𝛽(3− 𝜇𝜇) + (4 − 𝜇𝜇)(1 + 𝜇𝜇)

2�2𝜇𝜇(1 + 𝛽𝛽 + 𝜇𝜇)[𝛽𝛽(1− 𝜇𝜇) + (2− 𝜇𝜇)(1 + 𝜇𝜇)]
(18) 

   
     Further, by substitution of the above optimal TMDI tuning parameters into Eq. (15) 
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the following expression for the achieved minimum variance of performance index 𝐽𝐽 
can be obtained. 
 

𝐽𝐽 = 𝜋𝜋𝑆𝑆0
(1 + 𝜇𝜇)2�𝛽𝛽(3 − 𝜇𝜇) + (4− 𝜇𝜇)(1 + 𝜇𝜇)

𝜔𝜔𝑠𝑠3�(1 + 𝜇𝜇)(1 + 𝛽𝛽 + 𝜇𝜇)(𝛽𝛽 + 𝜇𝜇)
(19) 

 
     It is important to note that by setting 𝑏𝑏 = 𝛽𝛽 = 0 in Eqs. (17)-(18), the optimal 
tuning formulae of the classical TMD which minimize the relative displacement variance 
of an undamped SDOF main structure subjected to white noise excitation can be 
retrieved. In Section 3, the vibration suppression efficacy of the typical TMDI 
configuration is systematically compared against the conventional TMD benchmark 
(𝛽𝛽 = 0) for undamped SDOF structure subjected to white noise base excitation. 
 
2.4 Main Structure with a TMDI-I with Floor-connected Inerter 
      Although grounding the inerter in conventional TMDI systems is effective, this 
configuration is often impractical, as real buildings rarely permit a direct roof-to-ground 
inerter connection. To address this practical constraint, an alternative TMDI 
configuration, termed “TMDI-I”, is proposed, where the inerter is connected to the floor 
instead of the ground. This research first investigates the performance of the TMDI 
system when the inerter is connected to the floor. The model of the main structure with 
TMDI-I is shown in Fig. 3, and the governing equation is listed below: 
 
 

 
 

Fig. 3 Analytical model of a SDOF structure with a TMDI-I.  
 
 
�𝑚𝑚𝑠𝑠 + 𝑏𝑏 −𝑏𝑏
−𝑏𝑏 𝑚𝑚𝑑𝑑 + 𝑏𝑏� �

𝑢̈𝑢𝑠𝑠(𝑡𝑡)
𝑢̈𝑢𝑑𝑑(𝑡𝑡)� + �

𝑐𝑐𝑠𝑠 + 𝑐𝑐𝑑𝑑 −𝑐𝑐𝑑𝑑
−𝑐𝑐𝑑𝑑 𝑐𝑐𝑑𝑑

� �𝑢̇𝑢𝑠𝑠
(𝑡𝑡)

𝑢̇𝑢𝑑𝑑(𝑡𝑡)� + �𝑘𝑘𝑠𝑠 + 𝑘𝑘𝑑𝑑 −𝑘𝑘𝑑𝑑
−𝑘𝑘𝑑𝑑 𝑘𝑘𝑑𝑑

� �𝑢𝑢𝑠𝑠
(𝑡𝑡)

𝑢𝑢𝑑𝑑(𝑡𝑡)� = −�
𝑚𝑚𝑠𝑠
𝑚𝑚𝑑𝑑

� 𝑢̈𝑢𝑔𝑔(𝑡𝑡)  

 (20) 
 
     Note that the inerter force 𝑓𝑓𝑏𝑏 is proprotional to the relative acceleration of the 
inerter grounds, which is here the difference between main structure modal 
acceleration 𝑢̈𝑢𝑠𝑠 and acceleration 𝑢̈𝑢𝑑𝑑 of the TMDI mass 𝑚𝑚𝑑𝑑. 
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𝑓𝑓𝑏𝑏 = 𝑏𝑏(𝑢̈𝑢𝑑𝑑 − 𝑢̈𝑢𝑠𝑠) (21) 
 
Following similar derivation process, the displacement performance index 𝐽𝐽 assuming 
white noise excitation can be obtained:  
 

𝐽𝐽 = πS0
𝛽𝛽2𝐶𝐶1 + 𝜇𝜇2𝐶𝐶2 + 2𝛽𝛽𝛽𝛽𝐶𝐶3

2𝜇𝜇(2𝛽𝛽 + 𝜇𝜇)2𝜈𝜈𝜔𝜔𝑠𝑠3𝜉𝜉𝑑𝑑
(22) 

 
𝐶𝐶1 = 1 + 𝜇𝜇[−2 + 𝜇𝜇 + 4(1 + 𝜇𝜇)(−1 + 3𝜇𝜇)𝜈𝜈2 + 16𝜇𝜇(1 + 𝜇𝜇)2𝜈𝜈4] 

 
𝐶𝐶2 = 1 + (1 + 𝜇𝜇)4𝜈𝜈4 + (1 + 𝜇𝜇)2𝜈𝜈2[−2 + 𝜇𝜇 + 4(1 + 𝜇𝜇)𝜉𝜉𝑑𝑑2] 

 
𝐶𝐶3 = 1 − 𝜈𝜈2 + 𝜇𝜇[−1 + 4(1 + 𝜇𝜇)3𝜈𝜈4 + 𝜈𝜈2(−3 + 𝜇𝜇 + 3𝜇𝜇2 + 8(1 + 𝜇𝜇)2𝜉𝜉𝑑𝑑2)] 

 
     Assuming constant mass ratios 𝜇𝜇 and 𝛽𝛽, the performance index 𝐽𝐽 is minimized 
by solving the differentials of 𝐽𝐽 with respect to frequency ratio 𝜈𝜈 and damping ratio 𝜉𝜉𝑑𝑑, 
which yields: 
 

𝜈𝜈𝑜𝑜𝑜𝑜𝑜𝑜 =
�4𝛽𝛽2(1− 3𝜇𝜇) + 2𝛽𝛽(1 + 3𝜇𝜇)(1 − 𝜇𝜇) + 𝜇𝜇(2− 𝜇𝜇)(1 + 𝜇𝜇)

�2𝜇𝜇(1 + 𝜇𝜇)(1 + 4𝛽𝛽 + 𝜇𝜇)2
(23) 

 
and 
 

𝜉𝜉𝑑𝑑,𝑜𝑜𝑜𝑜𝑜𝑜 =
(2𝛽𝛽 + 𝜇𝜇)�4𝛽𝛽2(5𝜇𝜇 − 3) − 𝛽𝛽(4 + 12𝜇𝜇 − 8𝜇𝜇2) − 𝜇𝜇(4 + 3𝜇𝜇 − 𝜇𝜇2)

2�2𝜇𝜇[(𝜇𝜇 − 2)𝜇𝜇(1 + 𝜇𝜇)2 + 16𝛽𝛽3(3𝜇𝜇 − 1) + 4𝛽𝛽2(9𝜇𝜇2 − 2𝜇𝜇 − 3) + 2𝛽𝛽(5𝜇𝜇3 − 𝜇𝜇2 − 7𝜇𝜇 − 1)]
 

  (24) 
 
     Further, by substitution of the above optimal parameters into Eq. (22), the 
achieved minimum performance index 𝐽𝐽 can be obtained: 
 

𝐽𝐽 = πS0
(1 + 𝜇𝜇)2�𝜇𝜇(1 + 𝜇𝜇)(4 − 𝜇𝜇) + 4𝛽𝛽2(3− 5𝜇𝜇) + 4𝛽𝛽[1− 𝜇𝜇(−3 + 2𝜇𝜇)]

𝜔𝜔𝑠𝑠3(2𝛽𝛽 + 𝜇𝜇)�(1 + 𝜇𝜇)(1 + 4𝛽𝛽 + 𝜇𝜇)
(25) 

      
2.5 Main Structure with a TMDI-II with Floor-connected Inerter  
    An alternative floor-connected inerter configuration is presented in Fig. 4, featuring 
a parallel inerter-damper assembly arranged in series with a spring. To capture the 
spring and damper movement separately, an auxiliary degree of freedom in the node 
between the spring and the viscous damper, 𝑢𝑢𝑏𝑏(𝑡𝑡), is defined. The relevant equations 
of motion are given below: 
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Fig. 4 Mechanical model of a SDOF structure with a TMDI-II.  
 
 

�
𝑚𝑚𝑠𝑠 + 𝑏𝑏 −𝑏𝑏 0
−𝑏𝑏 𝑚𝑚𝑑𝑑 + 𝑏𝑏 0
0 0 0

� �
𝑢̈𝑢𝑠𝑠(𝑡𝑡)
𝑢̈𝑢𝑑𝑑(𝑡𝑡)
𝑢̈𝑢𝑏𝑏(𝑡𝑡)

�+ �
𝑐𝑐𝑠𝑠 0 0
0 𝑐𝑐𝑑𝑑 −𝑐𝑐𝑑𝑑
0 −𝑐𝑐𝑑𝑑 𝑐𝑐𝑑𝑑

� �
𝑢̇𝑢𝑠𝑠(𝑡𝑡)
𝑢̇𝑢𝑑𝑑(𝑡𝑡)
𝑢̇𝑢𝑏𝑏(𝑡𝑡)

� + �
𝑘𝑘𝑠𝑠 + 𝑘𝑘𝑑𝑑 0 −𝑘𝑘𝑑𝑑

0 0 0
−𝑘𝑘𝑑𝑑 0 𝑘𝑘𝑑𝑑

� �
𝑢𝑢𝑠𝑠(𝑡𝑡)
𝑢𝑢𝑑𝑑(𝑡𝑡)
𝑢𝑢𝑏𝑏(𝑡𝑡)

� = �
−𝑚𝑚𝑠𝑠
−𝑚𝑚𝑑𝑑

0
� 𝑢̈𝑢𝑔𝑔 

(26) 
 
The previous method of direct derivation of the performance index 𝐽𝐽 from the 

integral formula is suitable for second-order matrices; with the appearance of third-
order matrices in this section, this method is no longer easily applicable. To perform the 
optimization of the system, the fixed-point method proposed by Den Hartog (1947) is 
adopted. In the method, the transfer function of the main structure has two invariant 
points, P and Q, whose positions are independent of 𝜉𝜉𝑑𝑑  but functions of 𝜆𝜆 . The 
coordinates of P and Q can be obtained by substituting 𝜉𝜉𝑑𝑑 = 0 and 𝜉𝜉𝑑𝑑 = ∞. The 
transfer function can be expressed as: 
 

|𝐻𝐻(𝑖𝑖𝑖𝑖)| = �
𝐴𝐴2 + 𝜉𝜉𝑑𝑑2𝐵𝐵2

𝐶𝐶2 + 𝜉𝜉𝑑𝑑2𝐷𝐷2 (27) 

 
where 

 
𝐴𝐴 = −(𝑠𝑠3𝛽𝛽 + 𝑠𝑠𝑠𝑠𝑣𝑣2𝜔𝜔𝑠𝑠2 + 𝑠𝑠𝜇𝜇𝜇𝜇2𝜔𝜔𝑠𝑠2 + 𝑠𝑠𝑠𝑠𝜇𝜇𝜇𝜇2𝜔𝜔𝑠𝑠2) 

 
𝐵𝐵 = −2(𝜇𝜇𝑣𝑣3𝜔𝜔𝑠𝑠3 + 𝜇𝜇2𝑣𝑣3𝜔𝜔𝑠𝑠3) 

 
𝐶𝐶 = 𝑠𝑠5𝛽𝛽 + 𝑠𝑠3𝛽𝛽𝜔𝜔𝑠𝑠2 + 𝑠𝑠3𝛽𝛽𝑣𝑣2𝜔𝜔𝑠𝑠2 + 𝑠𝑠3𝜇𝜇𝑣𝑣2𝜔𝜔𝑠𝑠2 + 𝑠𝑠3𝛽𝛽𝛽𝛽𝑣𝑣2𝜔𝜔𝑠𝑠2 + 𝑠𝑠𝑠𝑠𝑣𝑣2𝜔𝜔𝑠𝑠4 + 𝑠𝑠𝑠𝑠𝑣𝑣2𝜔𝜔𝑠𝑠4 

 
𝐷𝐷 = 2(𝑠𝑠2𝜇𝜇𝑣𝑣3𝜔𝜔𝑠𝑠3 + 𝑠𝑠2𝜇𝜇2𝑣𝑣3𝜔𝜔𝑠𝑠3 + 𝜇𝜇𝑣𝑣3𝜔𝜔𝑠𝑠5) 

 
If 𝑠𝑠 = 𝑖𝑖𝑖𝑖𝜔𝜔𝑠𝑠, 𝜆𝜆 = 𝜔𝜔/𝜔𝜔𝑠𝑠,   
 
When 
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𝜉𝜉𝑑𝑑 → 0，|𝐻𝐻(𝑖𝑖𝑖𝑖)| =
𝐴𝐴
𝐶𝐶  𝑎𝑎𝑛𝑛𝑛𝑛 𝜉𝜉𝑑𝑑 → ∞，|𝐻𝐻(𝑖𝑖𝑖𝑖)| =

𝐵𝐵
𝐷𝐷

(28) 
 
The coordinates of P and Q can be expressed as:  
 

𝜆𝜆𝑃𝑃 = −�
𝜇𝜇𝑣𝑣2

𝑏𝑏  , 𝜆𝜆𝑄𝑄 = �𝜇𝜇𝑣𝑣
2

𝑏𝑏
(29) 

 
When 𝜉𝜉𝑑𝑑 = ∞, we obtain the following: 
 

𝜇𝜇𝑣𝑣3 + 𝜇𝜇2𝑣𝑣3

𝜇𝜇𝑣𝑣3 − 𝜆𝜆𝑃𝑃2𝜇𝜇𝑣𝑣3 − 𝜆𝜆𝑃𝑃2𝜇𝜇2𝑣𝑣3
=

−(𝜇𝜇𝑣𝑣3 + 𝜇𝜇2𝑣𝑣3)
𝜇𝜇𝑣𝑣3 − 𝜆𝜆𝑄𝑄2 𝜇𝜇𝑣𝑣3 − 𝜆𝜆𝑄𝑄2 𝜇𝜇2𝑣𝑣3

(30) 

 
By solving Eq. (30), the optimal frequency ratio of TMDI-II can found: 
 

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = �
𝛽𝛽

2𝜇𝜇(𝜇𝜇 + 1) − 𝛽𝛽
(31) 

 
To minimize the maximum value of |𝐻𝐻(𝑖𝑖𝑖𝑖)| at an invariant point P or Q, the optimal 

condition yields the solution given in Eq. (32). 
 

𝜕𝜕
𝜕𝜕𝜆𝜆2

(|𝐻𝐻(𝑖𝑖𝑖𝑖)|2)|𝜆𝜆=𝜆𝜆𝑃𝑃 = 0 ,
𝜕𝜕
𝜕𝜕𝜆𝜆2

(|𝐻𝐻(𝑖𝑖𝑖𝑖)|2)|𝜆𝜆=𝜆𝜆𝑄𝑄 = 0 (32) 
 

From the above Equation, 𝜉𝜉𝑑𝑑,𝑃𝑃
2  and 𝜉𝜉𝑑𝑑,𝑄𝑄

2  can be obtained. According to the definition 
of the optimal damping ratio mentioned by Liu and Liu (2005), the square of the TMDI-II 
optimal damping ratio is the average of 𝜉𝜉𝑑𝑑 ,𝑃𝑃

2  and 𝜉𝜉𝑑𝑑,𝑄𝑄
2 , expressed as: 

 

𝜉𝜉𝑑𝑑,𝑜𝑜𝑜𝑜𝑜𝑜
2 =

𝜉𝜉𝑑𝑑,𝑃𝑃
2 + 𝜉𝜉𝑑𝑑 ,𝑄𝑄

2

2
(33) 

 
The optimal damping ratio of TMDI-II can be obtained, as shown below: 
 

𝜉𝜉𝑑𝑑,𝑜𝑜𝑜𝑜𝑜𝑜 = �
𝐷𝐷1 + 𝐷𝐷2 + 𝐷𝐷3 + 𝐷𝐷4 − 𝐷𝐷5 − 32𝜇𝜇7(1 + 𝜇𝜇)5(2 + 𝜇𝜇) − 32𝛽𝛽𝛽𝛽5(1 + 𝜇𝜇)4(2𝜇𝜇3 − 1 − 7𝜇𝜇)

8𝛽𝛽𝛽𝛽(1 + 𝜇𝜇)3[𝛽𝛽 − 4𝜇𝜇(1 + 𝜇𝜇)][𝛽𝛽 − 2𝜇𝜇(1 + 𝜇𝜇)]3
(34) 

   
Where 
 

𝐷𝐷1 = 8𝛽𝛽2𝜇𝜇4(1 + 𝜇𝜇)3(42𝜇𝜇2 + 28𝜇𝜇3 − 1 − 10𝜇𝜇) 
 

𝐷𝐷2 = 8𝛽𝛽3𝜇𝜇3(1 + 𝜇𝜇)2(4𝜇𝜇4 − 42𝜇𝜇2 − 17𝜇𝜇3 − 4 − 10𝜇𝜇) 
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𝐷𝐷3 = 2𝛽𝛽5𝜇𝜇(4 + 11𝜇𝜇 + 12𝜇𝜇2 + 15𝜇𝜇3 + 8𝜇𝜇4) 

 
𝐷𝐷4 = 2𝛽𝛽4𝜇𝜇2(4 + 10𝜇𝜇 + 37𝜇𝜇2 + 21𝜇𝜇3 − 30𝜇𝜇4 − 20𝜇𝜇5) 

 
𝐷𝐷5 = 𝛽𝛽6(2 + 3𝜇𝜇 + 3𝜇𝜇2 + 2𝜇𝜇3)  

 
3. Structural Responses in the Frequency Domain and Time Domain 
 
3.1 Frequency Domain Analysis 
     A comprehensive frequency domain analysis of the system is conducted to 
evaluate the performance of various configurations, including the uncontrolled system, 
the TMD, conventional TMDI, and the two different TMDI configurations. Fig. 5 shows 
the frequency transfer function of a SDOF structure under different mass ratio (𝜇𝜇) and 
inertance ratio (𝛽𝛽). The results reveal that TMDIs generally exhibit better vibration 
control performance compared to the uncontrolled system and the TMD. Notably, 
conventional TMDI generally achieves the best resonant peak reduction in most of the 
mass and inertance ratios considered. For instance, at 𝜇𝜇 = 1% and 𝛽𝛽 = 1%, TMDI 
reduces the resonant peak by a substantial margin than the floor-connected TMDI 
configurations (TMDI-I and TMDI-II). However, as the inertance ratio is significantly 
reduced (e.g., 𝛽𝛽 = 0.01%), the three TMDIs exhibit similar performance.   
     When 𝜇𝜇  is held constant, e.g. at 1%, as can be seen from Fig. 5(a)-(c), 
increasing inertance ratio 𝛽𝛽 generally improves the TMDI performance, but has limited 
effect on TMDI-I and TMDI-II. For example, at a fixed 𝜇𝜇 of 1%, reducing 𝛽𝛽 from 1% to 
0.01% results in a broader attenuation bandwidth for TMDI-I and TMDI-II. This could be 
attributed to the enlarged inertance force from the larger relative acceleration between 
the two terminals of the grounded inerter. On the contrary, the TMDI-I and TMDI-II, due 
to the fact that the inerter is connected to the floor, the relative acceleration between 
the two terminals of the floored inerter is smaller, leading to smaller inertance force 
acting on the main structure.  
     When 𝛽𝛽  is held constant, e.g. at 1%, as can be seen from Fig. 5(a)(d)(e), 
increasing the mass ratio 𝜇𝜇 generally leads to improved peak suppression. This is 
because a higher mass ratio implies a larger additional mass, which enhances the 
energy dissipation capability of the TMDI system. It should be noted that all TMDIs shift 
to a lower frequency range when the mass ratio is increased from 1% to 5%. The 
frequency range TMDI<TMD<TMDI-I<TMDI-II when 𝜇𝜇  = 5%. The move of the 
frequency with the change of mass ratio requires further investigation. 
     When both mass and inertance ratios increase to 5% (Fig. 5(f)), TMDI continues 
to exhibit improved performance, while TMDI-I and TMDI-II shows reduced 
performance. From the observation, there seems to exist an optimal range of mass and 
intertance ratios for TMDI-I and TMDI-II in terms of performance improvement, however, 
the TMDI’s performance increases with increasing mass and inertance ratios.  
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(a) 𝜇𝜇 = 1%,𝛽𝛽 = 1% (b) 𝜇𝜇 = 1%,𝛽𝛽 = 0.01% 

  

(c) 𝜇𝜇 = 1%,𝛽𝛽 = 2% (d) 𝜇𝜇 = 2%,𝛽𝛽 = 1% 

  
(e) 𝜇𝜇 = 5%,𝛽𝛽 = 1% (f) 𝜇𝜇 = 5%,𝛽𝛽 = 5% 

Fig. 5 Displacement transfer function curves of the systems. 
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3.2 Time History Analysis 
     To further investigate the characteristics of the proposed TMDI configurations, 
time histories analysis of a SDOF structure with different damper systems but with the 
same mass ratio (1%) and two designated inertance ratios (1% and 0.01%) were 
conducted. Two earthquakes, namely an artificial earthquake generated from a white 
noise spectrum and the 1952 Taft earthquake were used as the ground excitations. 
The parameters of the main structure are listed in Table 1. 
 
 

  

  
 

Fig. 6 Displacement time histories under white noise input (𝜇𝜇 = 1%,𝛽𝛽 = 1%). 
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Fig. 7 Displacement time histories under white noise input (𝜇𝜇 = 1%,𝛽𝛽 = 0.01%). 
 

  

  
 

Fig. 8 Displacement time histories under 1952 Taft acceleration input (𝜇𝜇 = 1%,𝛽𝛽 =
1%). 
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Fig. 9 Displacement time histories under 1952 Taft acceleration input (𝜇𝜇 = 1%,𝛽𝛽 =
0.01%). 

 
 

Table 3 Displacement response of the SDOF structure with different damper 
configurations excited by ground motion. 

Parameter Displacement 
response 

White noise Taft 

TMD TMDI TMDI
-I 

TMDI
-II TMD TMDI TMDI

-I 
TMDI

-II 

𝜇𝜇 = 1%, 
𝛽𝛽 = 1% 

Peak 
displacement 

(cm) 

1.25
24 

1.14
59 

1.72
13 

2.17
39 

7.43
96 

7.66
93 

6.30
08 

6.05
48 

RMS 
displacement 

(cm) 

0.43
63 

0.39
24 

0.52
67 

0.62
73 

1.64
87 

1.67
38 

1.58
63 

1.54
68 

𝜇𝜇 = 1%, 
𝛽𝛽 = 0.01% 

Peak 
displacement 

(cm) 

1.25
24 

1.24
98 

1.25
43 

2.16
98 

7.43
96 

7.44
69 

7.41
49 

6.00
74 

RMS 
displacement 

(cm) 

0.43
63 

0.43
56 

0.43
71 

0.62
69 

1.64
87 

1.64
91 

1.64
67 

1.53
77 
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     Fig. 6 to 9 illustrates the displacement responses of the structure with different 
damper configurations. As shown in Fig. 6 and Table 3, the floor-connected TMDIs 
(TMDI-I and TMDI-II) exhibit higher story displacement than that of the TMD and TMDI 
for the white noise input. Specifically, when 𝜇𝜇 = 1%  and 𝛽𝛽 = 1%, TMDI-II displays the 
largest peak displacement (2.1739 cm) and root-mean-square (RMS) displacement 
(0.6273 cm) among all configurations. When 𝜇𝜇 = 1%  and 𝛽𝛽 = 0.01%, both TMDI and 
TMDI-I configurations effectively degenerate into a TMD-like system, resulting in very 
similar displacement responses to the standalone TMD. In contrast, the TMDI-II system 
exhibits a significantly higher displacement response under white noise ground 
excitation, reaching a peak displacement of 2.1698 cm, which is substantially larger 
than the other configurations. This indicates that TMDI-II is less effective in mitigating 
vibrations under white noise excitation. 
     However, it is not the case for the Taft excitation shown in Fig. 7 and Table 3. Fig. 
7 and Table 3 show that when 𝜇𝜇 = 1% and 𝛽𝛽 = 1%, the peak displacement responses 
of the main structure with TMDI-II exhibits the best performance with the lowest peak 
displacement (6.0548 cm) and RMS displacement (1.5468 cm), followed by TMDI- I 
(6.3008 cm peak displacement), and TMD (7.4396 cm peak displacement), and all of 
them perform better the TMDI (7.6693 cm peak displacement). When 𝜇𝜇 = 1% and 𝛽𝛽 =
0.01%, the performance trends remain consistent. TMDI and TMDI-I degenerate into 
the TMD system, and the displacement responses are similar, while TMDI-II continues 
to show the best performance with the lowest peak displacement (6.0074 cm) and RMS 
displacement (1.5377 cm). This indicates that even at very low inertance ratios, the 
TMDI-II configuration maintains its superior vibration mitigation capability under Taft 
wave excitation, outperforming all other configurations. Overall, the conventional TMDI 
with grounded inerter shows distinct better performance under white noise ground 
excitation, while TMDI-II system shows slightly better performance under Taft wave 
excitation. 
 
4. CONCLUSIONS 
 
In this paper, two novel floor-connected TMDI configurations are introduced. Through 
analytical modeling, frequency domain analysis, and time history simulations, and the 
following conclusions are drawn: 

(1) The strategic positioning of the inerter significantly influences vibration 
attenuation efficiency. The conventional grounded TMDI demonstrates superior 
vibration suppression capability compared to the TMD. The series floor-
connected TMDI (TMDI-II) outperforms the parallel floor-connected configuration 
(TMDI-I), which exhibits the lowest performance among the evaluated systems. 
Grounded configurations consistently outperform floor-connected counterparts 
due to enhanced energy dissipation pathways. 

(2) Analytical derivation using integral formulas and fixed-point theory establishes 
closed-form solutions for optimal frequency ratio and damping ratio in SDOF 
systems. These key parameters provide critical design guidelines for achieving 
maximum vibration reduction. 

(3) Time history simulations under white noise and Taft wave excitations confirm the 
performance hierarchy. Peak displacement responses follow TMDI-II < TMDI-I < 
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TMD < TMDI sequence under Taft wave excitation. At small inertance ratio 𝛽𝛽 =
0.01%, TMDI and TMDI-I configurations degenerate to TMD-equivalent behavior. 

     In this paper, only single-degree-of-freedom structures with a TMDI are discussed, and 
the type and number of ground motions used are limited. The response of the multi-degree-of-
freedom structure with a TMDI and different ground motion inputs will be further investigated in 
detail in the future. 
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